Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166983, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070581

RESUMO

Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Cisteína , Proliferação de Células , Proteínas que Contêm Bromodomínio , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111608

RESUMO

In recent years, gold nanoparticles (AuNPs) have aroused the interest of many researchers due to their unique physicochemical and optical properties. AuNPs are being explored in a variety of biomedical fields, either in diagnostics or therapy, particularly for localized thermal ablation of cancer cells after light irradiation. Besides the promising therapeutic potential of AuNPs, their safety constitutes a highly important issue for any medicine or medical device. For this reason, in the present work, the production and characterization of physicochemical properties and morphology of AuNPs coated with two different materials (hyaluronic and oleic acids (HAOA) and bovine serum albumin (BSA)) were firstly performed. Based on the above importantly referred issue, the in vitro safety of developed AuNPs was evaluated in healthy keratinocytes, human melanoma, breast, pancreatic and glioblastoma cancer cells, as well as in a three-dimensional human skin model. Ex vivo and in vivo biosafety assays using, respectively, human red blood cells and Artemia salina were also carried out. HAOA-AuNPs were selected for in vivo acute toxicity and biodistribution studies in healthy Balb/c mice. Histopathological analysis showed no significant signs of toxicity for the tested formulations. Overall, several techniques were developed in order to characterize the AuNPs and evaluate their safety. All these results support their use for biomedical applications.

3.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557947

RESUMO

The biological activity of natural plant-oil-based nanostructured lipid carriers (NPO-NLCs) can be enhanced by the encapsulation of bioactive compounds, and they in turn can improve topical delivery of the drugs. Quercetin (QR), a vital plant flavonoid, expresses antibacterial properties, and we recently showed that empty NPO-NLCs also have antimicrobial activity. The main objective of this study was to evaluate the synergetic effect of loading natural plant-oil-based nanostructured lipid carriers with quercetin (QR-NPO-NLCs) as a topical delivery system for the treatment of bacterial skin infections. Five nanostructured lipid carrier systems containing different oils (sunflower, olive, corn, coconut, and castor) were engineered. The particles' stability, structural properties, bioavailability, and antimicrobial activity were studied. NLCs with an average size of <200 nm and Z-potential of −40 mV were developed. Stable QR-NPO-NLCs were obtained with high encapsulation efficiency (>99%). The encapsulation of QR decreased cytotoxicity and increased the antioxidant effect of nanocarriers. An increase in antibacterial activity of the systems containing QR was demonstrated against Staphylococcus aureus. QR-NPO-NLCs could transport QR to an intranuclear location within HaCaT cells, indicating that QR-NPO-NLCs are promising candidates for controlled topical drug delivery.


Assuntos
Anti-Infecciosos , Nanoestruturas , Portadores de Fármacos/química , Quercetina/farmacologia , Lipídeos/química , Nanoestruturas/química , Óleos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Tamanho da Partícula
4.
Pigment Cell Melanoma Res ; 35(4): 425-435, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325505

RESUMO

The skin acts as a barrier to environmental insults and provides many vital functions. One of these is to shield DNA from harmful ultraviolet radiation, which is achieved by skin pigmentation arising as melanin is produced and dispersed within the epidermal layer. This is a crucial defence against DNA damage, photo-ageing and skin cancer. The mechanisms and regulation of melanogenesis and melanin transfer involve extensive crosstalk between melanocytes and keratinocytes in the epidermis, as well as fibroblasts in the dermal layer. Although the predominant mechanism of melanin transfer continues to be debated and several plausible models have been proposed, we and others previously provided evidence for a coupled exo/phagocytosis model. Herein, we performed histology and immunohistochemistry analyses and demonstrated that a newly developed full-thickness three-dimensional reconstructed human pigmented skin model and an epidermis-only model exhibit dispersed pigment throughout keratinocytes in the epidermis. Transmission electron microscopy revealed melanocores between melanocytes and keratinocytes, suggesting that melanin is transferred through coupled exocytosis/phagocytosis of the melanosome core, or melanocore, similar to our previous observations in human skin biopsies. We, therefore, present evidence that our in vitro models of pigmented human skin show epidermal pigmentation comparable to human skin. These findings have a high value for studies of skin pigmentation mechanisms and pigmentary disorders, whilst reducing the reliance on animal models and human skin biopsies.


Assuntos
Melaninas , Raios Ultravioleta , Animais , Epiderme , Humanos , Queratinócitos , Melanócitos , Melanossomas , Pigmentação , Pele , Pigmentação da Pele
5.
Pharmaceutics ; 14(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336056

RESUMO

The increased demand for physiologically relevant in vitro human skin models for testing pharmaceutical drugs has led to significant advancements in skin engineering. One of the most promising approaches is the use of in vitro microfluidic systems to generate advanced skin models, commonly known as skin-on-a-chip (SoC) devices. These devices allow the simulation of key mechanical, functional and structural features of the human skin, better mimicking the native microenvironment. Importantly, contrary to conventional cell culture techniques, SoC devices can perfuse the skin tissue, either by the inclusion of perfusable lumens or by the use of microfluidic channels acting as engineered vasculature. Moreover, integrating sensors on the SoC device allows real-time, non-destructive monitoring of skin function and the effect of topically and systemically applied drugs. In this Review, the major challenges and key prerequisites for the creation of physiologically relevant SoC devices for drug testing are considered. Technical (e.g., SoC fabrication and sensor integration) and biological (e.g., cell sourcing and scaffold materials) aspects are discussed. Recent advancements in SoC devices are here presented, and their main achievements and drawbacks are compared and discussed. Finally, this review highlights the current challenges that need to be overcome for the clinical translation of SoC devices.

6.
ALTEX ; 39(3): 405­418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319071

RESUMO

There is a global trend towards the development of physiologically relevant in vitro skin models to reduce or replace animal testing in the evaluation of therapeutic drug candidates. However, only commercial reconstructed human epidermis models (RHEm) have undergone formal validation. Although these commercial models are suitable for a wide range of applications, they are costly, lack flexibility, and the protocols used to generate them are not transparent. In this study, we present an open-source full-thickness skin model (FTSm) and assess its potential for drug testing. The FTSm was developed using endogenous extracellular matrix to recreate the dermal compartment, avoiding animal-derived hydrogels. An RHEm based on an open-source protocol was evaluated in parallel. The integrity of the skin barrier was analyzed by challenging the surface with detergents and measuring cell viability as well as by trans-epithelial electrical resistance (TEER) measurements. Skin irritation studies were performed based on OECD guidelines and complemented with an evaluation of the impact on the skin barrier by TEER measurement. The permeation of a dye through the developed models and a commercial membrane (Strat-M®) was compared using Franz diffusion cells and an infinite dose approach. The FTSm demonstrated structural and barrier properties comparable to native human skin. Although the RHEm showed a better performance in drug testing, the FTSm presented better barrier properties than commercial models as reported in the literature. These skin models can be a valuable contribution to accelerating the development and dissemination of alternatives to animal testing, avoiding the limitations of commercial models.


Assuntos
Irritantes , Testes de Irritação da Pele , Alternativas aos Testes com Animais/métodos , Animais , Epiderme , Humanos , Pele , Testes de Irritação da Pele/métodos
7.
Cells ; 11(2)2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35053415

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs-/-) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs-/- cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.


Assuntos
Deleção de Genes , Filamentos Intermediários/metabolismo , Chaperonas Moleculares/metabolismo , Neuroglia/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Rotenona/toxicidade
8.
Pharmaceutics ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834365

RESUMO

Nanostructured lipid carriers (NLCs) have gained significant attention as tools for the dermal delivery of therapeutics due to their stability, biocompatibility, and ability to improve drug bioavailability. The use of natural plant oils (NPO) in NLC formulations has numerous benefits for the skin due to their therapeutic potential. This work shows the effect of NLC composition on bioavailability in epidermal cells and antimicrobial activity against Staphylococcus aureus. Sixteen systems containing fixed (sunflower, olive, corn, peanut, coconut, castor, and sweet almond) and essential (eucalyptus) oils, with different solid lipid (SL): liquid lipid (LL) ratios, were engineered. The structural properties, bioavailability, and antimicrobial action of the particles was studied. The choice of NPO influenced the physicochemical stability by changing the diameter of NLC formulations (between 160 nm and 185 nm) and Z-potential (between -46 mV and -61 mV). All of the systems were characterized by concentration-dependent cytocompatibility with human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFn). The SL:LL ratio in some NLC systems impacted cell cytotoxicity differently. Antimicrobial properties were observed in all 16 systems; however, the type of oil and SL:LL ratio affected the activity of the formulations. Two NLC-NPO systems were found to be non-cytotoxic to human cells lines at concentrations that completely inhibited bacterial growth. These results present a strong argument that the use of natural oils in NLC formulations presents a promising tool for the treatment of skin infections.

9.
Life (Basel) ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575084

RESUMO

Poly(hydroxyalkanoates) (PHAs) with different material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate, P(3HB-co-3HV), with a 3HV of 25 wt.%, were used for the preparation of porous biopolymeric scaffolds. Solvent casting with particulate leaching (SCPL) and emulsion templating were evaluated to process these biopolymers in porous scaffolds. SCPL scaffolds were highly hydrophilic (>170% swelling in water) but fragile, probably due to the increase of the polymer's polydispersity index and its high porosity (>50%). In contrast, the emulsion templating technique resulted in scaffolds with a good compromise between porosity (27-49% porosity) and hydrophilicity (>30% water swelling) and without impairing their mechanical properties (3.18-3.35 MPa tensile strength and 0.07-0.11 MPa Young's Modulus). These specifications are in the same range compared to other polymer-based scaffolds developed for tissue engineering. P(3HB-co-3HV) displayed the best overall properties, namely, lower crystallinity (11.3%) and higher flexibility (14.8% elongation at break. Our findings highlight the potency of our natural biopolyesters for the future development of novel porous scaffolds in tissue engineering, thanks also to their safety and biodegradability.

10.
Micromachines (Basel) ; 12(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34357226

RESUMO

Biological barriers are essential for the maintenance of organ homeostasis and their dysfunction is responsible for many prevalent diseases. Advanced in vitro models of biological barriers have been developed through the combination of 3D cell culture techniques and organ-on-chip (OoC) technology. However, real-time monitoring of tissue function inside the OoC devices has been challenging, with most approaches relying on off-chip analysis and imaging techniques. In this study, we designed and fabricated a low-cost barrier-on-chip (BoC) device with integrated electrodes for the development and real-time monitoring of biological barriers. The integrated electrodes were used to measure transepithelial electrical resistance (TEER) during tissue culture, thereby quantitatively evaluating tissue barrier function. A finite element analysis was performed to study the sensitivity of the integrated electrodes and to compare them with conventional systems. As proof-of-concept, a full-thickness human skin model (FTSm) was grown on the developed BoC, and TEER was measured on-chip during the culture. After 14 days of culture, the barrier tissue was challenged with a benchmark irritant and its impact was evaluated on-chip through TEER measurements. The developed BoC with an integrated sensing capability represents a promising tool for real-time assessment of barrier function in the context of drug testing and disease modelling.

11.
Diagnostics (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34359293

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease that affects motor neurons controlling voluntary muscles. Survival is usually 2-5 years after onset, and death occurs due to respiratory failure. The identification of biomarkers would be very useful to help in disease diagnosis and for patient stratification based on, e.g., progression rate, with implications in therapeutic trials. Neurofilaments constitute already-promising markers for ALS and, recently, chitinases have emerged as novel marker targets for the disease. Here, we investigated cerebrospinal fluid (CSF) chitinases as potential markers for ALS. Chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein 2 (CHI3L2) and the benchmark marker phosphoneurofilament heavy chain (pNFH) were quantified by an enzyme-linked immunosorbent assay (ELISA) from the CSF of 34 ALS patients and 24 control patients with other neurological diseases. CSF was also analyzed by UHPLC-mass spectrometry. All three chitinases, as well as pNFH, were found to correlate with disease progression rate. Furthermore, CHIT1 was elevated in ALS patients with high diagnostic performance, as was pNFH. On the other hand, CHIT1 correlated with forced vital capacity (FVC). The three chitinases correlated with pNFH, indicating a relation between degeneration and neuroinflammation. In conclusion, our results supported the value of CHIT1 as a diagnostic and progression rate biomarker, and its potential as respiratory function marker. The results opened novel perspectives to explore chitinases as biomarkers and their functional relevance in ALS.

12.
Tissue Eng Part C Methods ; 27(7): 433-443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34148380

RESUMO

Reconstructed human skin models are a valuable tool for drug discovery, disease modeling, and basic research. In the past decades, major progress has been made in this field leading to the development of full-thickness skin models (FTSms) better representative of the native human skin by including the cellular cross talk between the dermal and epidermal layers. However, current available FTSms still present important limitations since they are only suitable for short-term studies, include nonhuman extracellular matrix (ECM) components and have a weak skin barrier function compared with in vivo human skin. In this study, a fibroblast-derived matrix was combined with the use of an inert polystyrene scaffold for the development of a fully human dermis capable of supporting a differentiated epidermis. To produce a pigmented FTSm, a coculture with keratinocytes, melanocytes, and fibroblasts was established. The structure and functionality of the developed FTSms were studied for short- and long-term cultivation using histological and immunofluorescence staining. The integrity of the skin barrier was evaluated using transepithelial electrical resistance (TEER) measurements. It was possible to obtain a mature dermis capable of supporting an epidermis without keratinocyte infiltration in only 6 days. ECM components (collagen IV and fibrin) were secreted by the fibroblasts and accumulated in the scaffold structure, recreating the microenvironment of the native human dermis. Moreover, the use of a scaffold resulted in a structure with mechanical stability due to its noncontracting nature. The coculture of primary human keratinocytes resulted in a terminally differentiated skin equivalent that could maintain its architecture and homeostasis up to 50 days. Melanocytes were correctly integrated within the epidermal basal layer and made it possible to reproduce constitutive pigmentation. TEER levels increased during culture time, reaching values of 1.1 ± 0.2 kΩ.cm2 for the FTSm, indicative of a functional skin barrier.


Assuntos
Derme , Pele , Células Epidérmicas , Fibroblastos , Humanos , Queratinócitos
13.
Polymers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801747

RESUMO

Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h-1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds' hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.

15.
Micromachines (Basel) ; 7(10)2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404355

RESUMO

This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i) impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii) simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii) fluorescence-based bead counting.

16.
Ticks Tick Borne Dis ; 7(1): 85-93, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26456355

RESUMO

Babesia ovis, a tick-transmitted intraerythrocytic protozoan parasite, causes severe infections in small ruminants from Southern Europe, Middle East, and Northern Africa. With the aim of finding potential targets for the development of control methods against this parasite, sequence analysis of its genome led to the identification of four putative cysteine proteases of the C1A family. Orthology between B. ovis, B. bovis, T. annulata, and T. parva sequences showed that each B. ovis C1A peptidase sequence clustered within one of the four ortholog groups previously reported for these piroplasmids. The ortholog of bovipain-2 of B. bovis and falcipain-2 of Plasmodium falciparum, respectively, was designated "ovipain-2" and further characterized. In silico analysis showed that ovipain-2 has the typical topology of papain-like cysteine peptidases and a highly similar predicted three dimensional structure to bovipain-2 and falcipain-2, suggesting susceptibility to similar inhibitors. Immunoblotting using antibodies raised against a recombinant form of ovipain-2 (r-ovipain-2) demonstrated expression of ovipain-2 in in vitro cultured B. ovis merozoites. By immunofluorescence, these antibodies reacted with merozoites and stained the cytoplasm of infected erythrocytes. This suggests that ovipain-2 is secreted by the parasite and could be involved in intra- and extracellular digestion of hemoglobin and/or cleavage of erythrocyte proteins facilitating parasite egress. A significant reduction in the percentage of parasitized erythrocytes was obtained upon incubation of B. ovis in vitro cultures with anti-r-ovipain-2 antibodies, indicating an important functional role for ovipain-2 in the intra erythrocytic development cycle of this parasite. Finally, studies of the reactivity of sera from B. ovis-positive and negative sheep against r-ovipain-2 showed that this protease is expressed in vivo, and can be recognized by host antibodies. The results of this study suggest that ovipain-2 constitutes a potential target for immunotherapies and drug development against ovine babesiosis.


Assuntos
Babesia/metabolismo , Cisteína Proteases/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Protozoários/metabolismo , Babesia/genética , Cisteína Proteases/genética , DNA de Protozoário/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas de Protozoários/genética
17.
Ticks Tick Borne Dis ; 5(6): 902-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25127159

RESUMO

Babesia ovis is a tick-transmitted protozoa parasite that infects small ruminants causing fever, anaemia, hemoglobinuria, anorexia and, in acute cases, death. Common in tropical and sub-tropical areas, the presence of this parasite in sheep herds has an economic impact on industry and therefore sensitive methods for the diagnosis and disease eradication are required. To achieve this goal, a semi-nested PCR for B. ovis specific identification was developed and consequent reaction conditions and enzymes were optimized and tested with field samples. 300 blood samples from small ruminants and 39 ticks from Rhipicephalus genus were collected from different regions of Portugal. Afterwards, DNA extraction was performed and conventional and semi-nested PCR were accomplished for all samples. The results obtained from both methodologies were compared and the sensitivity was evaluated. Employing the semi-nested PCR it was possible to identify a higher number of positive cases among the evaluated samples than using the conventional PCR, namely 38/300 blood samples and 7/39 ticks. However, fragment amplification was only observed in 5 out of 300 blood samples and in none of the 39 ticks when a conventional PCR was employed. The validation of the results was achieved by sequencing the DNA fragments corresponding to the hypervariable v4 region of the 18S ribosomal RNA gene and performing an alignment with sequences already published on GenBank(®). The ticks collected in this study belong to the Rhipicephalus genus, although other species could be involved as a vector in the Babesia spread. The diagnostic assay here described is presently the most effective and sensitive method for detection of B. ovis in field blood samples and ticks, enabling the detection up to 1 parasite into 10(9) erythrocytes.


Assuntos
Babesia/isolamento & purificação , Babesiose/diagnóstico , Doenças das Cabras/diagnóstico , Reação em Cadeia da Polimerase/veterinária , Rhipicephalus/parasitologia , Doenças dos Ovinos/diagnóstico , Animais , Vetores Aracnídeos/parasitologia , Babesia/genética , Babesiose/parasitologia , Sequência de Bases , DNA de Protozoário/genética , DNA Ribossômico/genética , Doenças das Cabras/parasitologia , Cabras , Dados de Sequência Molecular , Portugal , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/veterinária , Ovinos , Doenças dos Ovinos/parasitologia
18.
ACS Appl Mater Interfaces ; 6(12): 9100-10, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24853082

RESUMO

For several years now, nanoscaled materials have been implemented in biotechnological applications related to animal (in particular human) cells and related pathologies. However, the use of nanomaterials in plant biology is far less widespread, although their application in this field could lead to the future development of plant biotechnology applications. For any practical use, it is crucial to elucidate the relationship between the nanomaterials and the target cells. In this work we have evaluated the behavior of two types of nanomaterials, quantum dots and superparamagnetic nanoparticles, on Fusarium oxysporum, a fungal species that infects an enormous range of crops causing important economic losses and is also an opportunistic human pathogen. Our results indicated that both nanomaterials rapidly interacted with the fungal hypha labeling the presence of the pathogenic fungus, although they showed differential behavior with respect to internalization. Thus, whereas magnetic nanoparticles appeared to be on the cell surface, quantum dots were significantly taken up by the fungal hyphae showing their potential for the development of novel control approaches of F. oxysporum and related pathogenic fungi following appropriate functionalization. In addition, the fungal germination and growth, accumulation of ROS, indicative of cell stress, and fungal viability have been evaluated at different nanomaterial concentrations showing the low toxicity of both types of nanomaterials to the fungus. This work represents the first study on the behavior of quantum dots and superparamagnetic particles on fungal cells, and constitutes the first and essential step to address the feasibility of new nanotechnology-based systems for early detection and eventual control of pathogenic fungi.


Assuntos
Fusarium/isolamento & purificação , Nanopartículas/química , Plantas/microbiologia , Pontos Quânticos , Animais , Fusarium/patogenicidade , Humanos , Nanotecnologia
19.
BMC Biotechnol ; 13: 111, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359290

RESUMO

BACKGROUND: Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. RESULTS: When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. CONCLUSIONS: Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1ß, Top1ß and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells.


Assuntos
Antioxidantes/metabolismo , Reparo do DNA , Medicago sativa/citologia , Células Vegetais/efeitos dos fármacos , Pontos Quânticos , Catalase/metabolismo , Células Cultivadas , DNA Topoisomerases Tipo I/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Glutationa Redutase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Methods Mol Biol ; 906: 143-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791429

RESUMO

Detailed protocols for the preparation of CdSe nanocrystals coated with a multishell structure of ZnS and their surface modification based on the successive ion layer adsorption and reaction method are described. The first phase of the synthesis produces a hydrophobic surface consisting of a TOPO/HDA ligand mixture. This is followed by a surface modification of the quantum dots (QDs) with 3-mercaptopropionic acid by the phase transfer method. The modified QDs become soluble in aqueous systems such as water or buffers for further biological applications.


Assuntos
Ácido 3-Mercaptopropiônico/química , Compostos de Cádmio/química , Íons/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...